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Abstract
The new central and noncentral potential functions (CPFs and NCPFs) of
a molecule depending on the coordinates of the nuclei are introduced.
Using complete orthonormal sets of �α-exponential-type orbitals (�α-ETOs)
introduced by the author, the series expansion formulae for the multicentre
electronic attraction (EA), electric field (EF) and electric field gradient (EFG)
integrals over Slater-type orbitals (STOs) in terms of CPFs and NCPFs are
derived. The relationships obtained are valid for the arbitrary location, quantum
numbers and screening constants of STOs.

PACS number: 31.10.+z

1. Introduction

The electric field induced within a molecule by its electrons determines a whole series of
important physical properties of the molecule. In particular, the values of the potential of
this field at the nuclei determine the nuclear dynamic shielding constants, the values of the
strength of this field at the nuclei determine the forces exerted by the electrons on them
and the values of the gradient of this field at the nuclei determine the interaction of their
quadrupole moments with the electrons. According to the well-known Hellman–Feynman
theorem of electrostatics [1], the forces exerted by the electrons on the nuclei can be found
by differentiating the electronic energy (or the adiabatic potential function) of the molecule
with respect to displacements of the nuclei, for which purpose it is sufficient to know the
dependence of the adiabatic potential function of the molecule on the coordinates of the
nuclei. The derivatives of the adiabatic potential function give the values of the electric
field gradient at the nuclei which are important in the theory of electron–nuclei quadrupole
interactions. It should be noted that the electric field at the nuclei, and its gradient are very
sensitive to minor errors in the wavefunctions. Consequently, reliable theoretical calculations
on these properties are known only for a few simple molecules (see, e.g., [2] and references
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quoted therein). Older works are reviewed in [3]. There is, therefore, interest in a general
investigation of the derivatives of the electrostatic potential created by the electrons and the
interactions between electrons and nuclei of a molecule.

As is well known the basis sets of functions for calculations in the theory of molecular
structure are of prime importance since the quality of several molecular properties may depend
strongly on the nature of these basis functions. The Gaussian-type orbitals (GTOs) are used
almost exclusively as the basis sets for ab initio quantum chemistry. However, GTOs are
not able to represent important properties of the exact electronic wavefunction at nuclei
and at large distances. Thus, exponential-type orbitals (ETOs) would be desirable for basis
sets in molecular calculations because they satisfy the cusp condition at the nuclei [4] and the
exponential decay for large distances [5] as does the exact wavefunction. It should be noted that
the exact wavefunction for r → ∞, where r is the distance to the origin, decays with ζ = √

2ε,
where ζ and ε are the screening parameter of ETOs and the lowest ionization potential of the
molecule, respectively. Thus, the ETO basis set that is used has such a function as the most
diffuse one, and may, for the smallest ζ , become more easily nearly linear dependent. The
use of these approximations for a wavefunction in molecular electronic structure calculations
would be highly desirable since they are capable of producing much better approximations
than the exponential functions. However, the routine use of linearly dependence functions
can be prevented by the fact that the efficient and reliable computation of their two electron
multicentre integrals is extremely difficult. The large body of formulae of the expansion
methods of ETOs about a displaced centre [6–11], the Fourier transform methods [12–14] and
the B-function method [15–18] developed for the evaluation of multicentre molecular integrals
over ETOs is not quite satisfactory in the numerical aspects of multicentre integrals, especially
in the calculation of three- and four-centre electron-repulsion integrals. The reason is that so
far nobody has been able to compute the complicated two electron integrals both efficiently
and reliably. This would be necessary to make molecular electronic structure calculations with
an ETO basis feasible. In the literature, the wide use of ETOs as basis sets has been pursued
with considerable enthusiasm by a growing number of workers because of huge advances
in applied mathematics and computer science (see [19–27] and references quoted therein).
In [28] we introduced the new complete orthonormal sets of �α-ETOs (where α = 1, 0,
−1,−2, . . . ). Using �α-ETOs in [29] the different analytical expressions were derived for
expansion of one- and two-centre electron charge density over Slater-type orbitals (STOs) in
terms of STOs about a new centre. The expansion coefficients in these formulae are expressed
through the overlap integrals with the same screening parameters, for the calculation of which
efficient computer programs are available in our group [30, 31]. Therefore, using the computer
programs for the overlap integrals based on auxiliary functions [30] and recurrence relations
[31] one can calculate arbitrary multicentre integrals appearing in the determination of various
properties for molecules when the Hartree–Fock–Roothaan approximation is employed. The
aim of this paper is to establish the expansion formulae for the multicentre electronic attraction
(EA), electric field (EF) and electric field gradient (EFG) integrals over STOs using general
analytical relations for potential functions of a molecule introduced in this study and complete
orthonormal sets of �α-ETOs. It should be noted that the analytical formulae obtained in
this work can be used for the calculation of multicentre EA, EF and EFG integrals with
arbitrary ETOs.

2. Expressions in terms of two-centre basic integrals

The multicentre integrals examined in this work have the following form:
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• EA integrals

Unlm,n′l′m′(ζ, ζ ′; �Rca, �Rab) =
∫

χ∗
nlm(ζ, �ra1)χn′l′m′(ζ

′, �rc1)O(rb1) dV1. (1)

• EF integrals

Ui
nlm,n′l′m′(ζ, ζ ′; �Rca, �Rab) = ∂

∂Xi
Unlm,n′l′m′(ζ, ζ ′; �Rca, �Rab) (2a)

=
∫

χ∗
nlm(ζ, �ra1)χn′l′m′(ζ

′, �rc1)O
i(�rb1) dV1. (2b)

• EFG integrals

U
ij

nlm,n′l′m′(ζ, ζ ′; �Rca, �Rab) = ∂2

∂Xi∂Xj
Unlm,n′l′m′(ζ, ζ ′; �Rca, �Rab) (3a)

=
∫

χ∗
nlm(ζ, �ra1)χn′l′m′(ζ

′, �rc1)O
ij (�rb1) dV1 (3b)

where �Rca = �rc1 − �ra1, �Rab = �ra1 − �rb1 and

O(rb1) = 1

rb1
(4)

Oi(�rb1) = xi
b1

r3
b1

(5)

Oij (�rb1) = 3xi
b1x

j

b1 − δij r
2
b1

r5
b1

− 4π

3
δij δ(�rb1). (6)

Here x1 = x, x−1 = y, x0 = z and X1 = X,X−1 = Y,X0 = Z are the Cartesian coordinates
of the electron and nucleus b, respectively; δ(�r) is the Dirac delta function; χnlm(ζ, �ra1) and
χn′l′m′(ζ ′, �rb1) are the normalized STOs centred on the nuclei a and b which are defined by

χnlm(ζ, �r) = Rn(ζ, r)Slm(θ, ϕ) (7)

Rn(ζ, r) = (2ζ )n+1/2[(2n)!]−1/2rn−1 e−ζ r . (8)

The spherical harmonics in equation (7) are determined by

Slm(θ, φ) = Pl|m|(cos θ)�m(φ) (9)

where Pl|m| are normalized associated Legendre functions [32].

• For complex spherical harmonics (Slm ≡ Ylm)

�m(φ) = 1√
2π

eimϕ. (10)

• For real spherical harmonics

�m(φ) = 1√
π(1 + δm0)

{
cos|m|φ for m � 0
sin|m|φ for m < 0

. (11)
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Now we can move to the determination of expressions for the multicentre integrals (1),
(2) and (3) in terms of basic integrals. For this purpose we use in equations (1), (2) and (3) the
following sets of expansion formulae for the electron charge density, obtained with the help
of �α-ETOs , in terms of STOs [29]:

χp(ζ, �ra)χ
∗
p′(ζ

′, �rc) = 1√
4π

lim
N→∞

N∑
µ=1

µ−1∑
ν=0

ν∑
σ=−ν

WαN
pp′q(ζ, ζ ′, z; �Rca, 0)χq(z, �ra) (12)

where α = 1, 0,−1,−2, . . . , p ≡ nlm, p′ ≡ n′l′m′, q ≡ µνσ and z = ζ + ζ ′. The quantities
WαN

pp′q(ζ, ζ ′, z; �Rca, 0) in equation (12) are the two-centre expansion coefficients which can be
expressed through the overlap integrals with the same screening parameters.

Taking into account equation (12) in equations (1)–(3) we obtain the series expansion
formulae for the multicentre EA, EF and EFG integrals in terms of two-centre basic integrals
defined by

Jnlm(ζ, �R) = lim
ζ ′→0

√
8π(2ζ ′)−3/2Unlm,100(ζ, ζ ′; 0, �R) (13a)

= 1√
4π

∫
χ∗

nlm(ζ, �ra1)O(rb1) dV1 (13b)

J i
nlm(ζ, �R) = ∂

∂Xi
Jnlm(ζ, �R) (14a)

= 1√
4π

∫
χ∗

nlm(ζ, �ra1)O
i(rb1) dV1 (14b)

J
ij

nlm(ζ, �R) = ∂2

∂Xi∂Xj
Jnlm(ζ, �R) (15a)

= 1√
4π

∫
χ∗

nlm(ζ, �ra1)O
ij (rb1) dV1 (15b)

where �R = �Rab and X1 = X,X−1 = Y,X0 = Z(i, j = 1,−1, 0). Using equation (1) of
[33] in equation (13a) it is easy to establish for the two-centre basic EA integral the following
relation:

Jnlm(ζ, �R) = 2n+1(n + l + 1)!

[(2l + 1)(2n)!(2ζ )]1/2(ζR)l+1

(
1 − e−ζR

n+l∑
σ=0

γ l
σ (n)(ζR)σ

)
S̄∗

lm(θ, ϕ) (16)

where

S̄lm(θ, ϕ) =
(

4π

2l + 1

)1/2

Slm(θ, ϕ) (17)

γ l
σ (n) = 1

σ !
− (n − l)!

(n + l + 1)!(σ − 2l − 1)!
. (18)

Here γ l
σ (n) = 0 for σ < 0 and σ > n + l. In equation (18) terms with negative factorials

should be equated to zero.

3. Use of central and noncentral potentials in evaluation of basic integrals

In order to evaluate the two-centre basic integrals (14a) and (15a) give certain formulae which
are required for the derivatives of the function

Mlm(x, y, z) = rl S̄lm(θ, ϕ). (19)
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With the aid of the well-known characteristics of the spherical harmonics we can show
that the derivatives of these functions with respect to Cartesian coordinates can be expressed
in terms of Ml−1m:

∂Mlm

∂xi

=
l−1∑

m′=−(l−1)

ai
lm,m′Ml−1m′ (20)

∂2Mlm

∂xi∂xj

=
l−2∑

m′=−(l−2)

a
ij

lm,m′Ml−2m′ . (21)

Here ai
lm,m′ ≡ 0 for l = 0, a

ij

lm,m′ ≡ 0 for l = 0, 1 and

a1
lm,m′ = −εm

2
{[(1 + δm0)(1 − δm,−1)(l − m)(l − m − 1)]1/2δm′,m+1

− [(1 − δm0)(1 + δm1)(l + m)(l + m − 1)]1/2δm′,m−1} (22)

a−1
lm,m′ = −εm

2
{[(1 + δm0)(1 + δm,−1)(l − m)(l − m − 1)]1/2δm′,−m−1

+ [(1 − δm0)(1 − δm1)(l + m)(l + m − 1)]1/2δm′,−m+1} (23)

a0
lm,m′ = [(l + m)(l − m)]1/2δm′m for l � 1 (24)

a
ij

lm,m′ = a
ji

lm,m′ =
l−1∑

m′′=−(l−1)

a
j

lm,m′′a
i
l−1m′′,m′ for l � 2 (25)

where εm = ±1. The sign of the symbol εm is determined by the sign of m , i.e. εm = +1 for
m � 0 and εm = −1 for m < 0.

In the present study we also need the following formulae for the derivatives of a product
of the functions Mlm(x, y, z) and f (r) where r = (x2 + y2 + z2)1/2:

∂(Mlmf )

∂xi

= ∂Mlm

∂xi

f + Mlmxi

(
1

r

∂f

∂r

)
(26)

∂2(Mlmf )

∂xi∂xj

= ∂2Mlm

∂xi∂xj

f +
∂Mlm

∂xi

xj

(
1

r

∂f

∂r

)
+

∂Mlm

∂xj

xi

(
1

r

∂f

∂r

)

+ Mlm

[
δij

(
1

r

∂f

∂r

)
+ xixj

1

r

∂

∂r

(
1

r

∂f

∂r

)]
. (27)

Taking into account equations (16), (19)–(21), (26) and (27) in equations (13a), (14a)
and (15a) we finally obtain for two-centre basic integrals the following relations in terms of
central and noncentral potential functions:

• for two-centre basic EA integrals

Jnlm(ζ, �R) = f 00
nl,lm(ζ, �R) (28)

• for two-centre basic EF integrals

J i
nlm(ζ, �R) =

l−1∑
m′=−(l−1)

ai
lm,m′f

10
nl,l−1m′(ζ, �R) − (2l + 1)

(
Xi

R

)
f 11

nl,lm(ζ, �R) (29)
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• for two-centre basic EFG integrals

J
ij

nlm(ζ, �R) =
l−2∑

m′=−(l−2)

a
ij

lm,m′f
20
nl,l−2m′(ζ, �R) − (2l + 1)

l−1∑
m′=−(l−1)

[
ai

lm,m′

(
Xj

R

)

+ a
j

lm,m′

(
Xi

R

)]
f 21

nl,l−1m′(ζ, �R) − (2l + 1)δij f
21
nl,lm(ζ, �R)

+ (2l + 1)(2l + 3)

(
Xi

R

) (
Xj

R

)
f 22

nl,lm(ζ, �R) −
√

4π

3
δijχ

∗
nlm(ζ, �R). (30)

Here, f tk
nl,υ m(ζ, �R) are the potential functions determined by

f tk
nl,υ m(ζ, �R) = f tk

nl (ζ, R)S̄υ m(θ, ϕ) (31)

f tk
nl (ζ, �R) = f tk

nl,00(ζ, R) = Nt
nl(2ζ )

(ζR)l+t+1

(
1 − e−ζR

n+l+k∑
σ=0

γ lk
σ (n)(ζR)σ

)
(32)

Nt
nl(2ζ ) = 2n−t+1(n + l + 1)!

[
(2ζ )2t−1

(2l + 1)(2n)!

]1/2

(33)

where t = 0, 1, 2 for EA, EF and EFG integrals, respectively, and 0 � k � t . The
coefficients γ lk

σ (n) in equation (32) can be determined from γ l
σ (n), equation (18), by the

following relations:

γ l0
σ (n) = γ l

σ (n) (34)

γ l1
σ (n) = 1

2l + 1

[
(2l + 1 − σ)γ l

σ (n) + γ l
σ−1(n)

]
(35)

γ l2
σ (n) = 1

(2l + 1)(2l + 3)

[
(2l + 1 − σ)(2l + 3 − σ)γ l

σ (n)

+ (4l + 5 − 2σ)γ l
σ−1(n) + γ l

σ−2(n)
]
. (36)

The characteristics of the potential functions are discussed in the appendix.
Now we can move to the calculation of one-centre basic integrals. For this purpose we

must go to the limit in equations (28), (29) and (30) where R → 0. Taking into account
equation (A.6) of the appendix, we can convince ourselves of the accuracy of the following
formulae for the one-centre basic integrals:

• for one-centre basic EA integrals

Jnlm(ζ ) = N0
n0(2ζ )

n + 1
δl0δm0 (37)

• for one-centre basic EF integrals

J i
nlm(ζ ) = (n − 1)!

(n + 2)!
N1

n1(2ζ )δl1δmi (38)

• for one-centre basic EFG integrals

J
ij

nlm(ζ ) = (n − 2)!

(n + 3)!
N2

n2(2ζ )a
ij

2m,0δl2 −
√

2

6
(2ζ )3/2δij δn1δl0δm0 (39)

where Jnlm(ζ ) = Jnlm(ζ, 0), J i
nlm(ζ ) = J i

nlm(ζ, 0) and J
ij

nlm(ζ ) = J
ij

nlm(ζ, 0). It should be
noted that expressions (37), (38) and (39) can also be established by the calculation of
one-centre basic integrals separately.
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Taking into account the relationships for one- and two-centre basic integrals all the
multicentre EA, EF and EFG integrals can be calculated using equations (A.3), (A.5) and
(A.6) for potential functions. For this purpose, we need only the Cartesian coordinates of the
nuclei and the quantum numbers and screening constants of STOs.
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Appendix

We have seen above that the multicentre EA, EF and EFG integrals contain the potential
functions f tk

nl (ζ, �R) , the radial part of which is determined by equation (32). Let us rewrite
equation (32) in the following form:

f tk
nl (ζ, R) = Nt

nl(2ζ )

[
1

xl+t+1

(
1 − e−x

l+t∑
σ=0

xσ

σ !

)
+

e−x

xl+t+1

l+t∑
σ=0

(
1

σ !
− γ lk

σ (n)

)
xσ

− e−x

n+l+k∑
σ=l+t+1

γ lk
σ (n)xσ−(l+t+1)

]
(A.1)

where x = ζR. Using characteristics of the coefficients γ l
σ (n) it is easy to show that

1

σ !
− γ lk

σ (n) = 0 for 0 � σ � l + t and l � tδk0. (A.2)

Taking into account equation (A.2) in (A.1) we finally obtain for the radial part of potential
functions the following relation:

f tk
nl (ζ, R) = Nt

nl(2ζ )

[
1

xl+t+1

(
1 − e−x

l+t∑
σ=0

xσ

σ !

)
− e−x

n+l+k∑
σ=l+t+1

γ lk
σ (n)xσ−(l+t+1)

]
. (A.3)

As can be seen from equation (A.3), the potential functions f tk
nl (ζ, R) become numerically

unstable in the case of small values of parameter x = ζR. In this case, taking into account the
relation

1

xn

(
1 − e−x

n−1∑
σ=0

xσ

σ !

)
=

∞∑
σ=0

(−x)σ

(n − 1)!σ !(n + σ)
(A.4)

we obtain the following series expansion formula:

f tk
nl (ζ, R) = Nt

nl(2ζ )

[ ∞∑
σ=0

(−x)σ

(l + t)!σ !(l + t + σ + 1)
− e−x

n+l+k∑
σ=l+t+1

γ lk
σ (n)xσ−(l+t+1)

]
. (A.5)

With the calculation of one-centre potential functions we must go to the limit in
equation (A.5) where x → 0. Then, we obtain:

f tk
nl (ζ ) = (n − t)!

(n + t + 1)!
Nt

nl(2ζ )δtlδk0 (A.6)

where f tk
nl (ζ ) = f tk

nl (ζ, 0).
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